GLn-REPRESENTATIONS BY CHARACTERISTIC-FREE ISOMORPHISMS BETWEEN GENERALIZED SCHUR ALGEBRAS
نویسندگان
چکیده
Isomorphisms are constructed between generalized Schur algebras in different degrees. The construction covers both the classical case (of general linear groups over infinite fields of arbitrary characteristic) and the quantized case (in type A, for any non-zero value of the quantum parameter q). The construction does not depend on the characteristic of the underlying field or the choice of q 6= 0. The proof combines a combinatorial construction with comodule structures and Ringel duality. Applications range from equivalences of categories to results on the structure and cohomology of Schur algebras to identities of decomposition numbers and also of pKostka numbers, in both cases reproving and generalizing row and column removal rules.
منابع مشابه
Generalized Drazin inverse of certain block matrices in Banach algebras
Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.
متن کاملStructures and Representations of Affine q-Schur Algebras
This paper provides a survey for the latest developments in the theory of affine q-Schur algebras and Schur–Weyl duality between affine quantum gln and affine type A Hecke algebras. More precisely, we will establish, on the one side, an isomorphism between the double Ringel–Hall algebra D△(n) of a cyclic quiver △(n) and the quantum loop algebra of gln, and establish, on the other side, explicit...
متن کاملQUANTUM gln, q-SCHUR ALGEBRAS AND THEIR INFINITE/INFINITESIMAL COUNTERPARTS
We present a survey of recent developments of the Beilinson–Lusztig–MacPherson approach in the study of quantum gl n , infinitesimal quantum gl n , quantum gl ∞ and their associated q-Schur algebras, little q-Schur algebras and infinite q-Schur algebras. We also use the relationship between quantum gl ∞ and infinite q-Schur algebras to discuss their representations.
متن کاملFinite Dimensional Algebras, Quantum Groups and Finite Groups of Lie Type
We shall discuss generic extension monoids associated with finite dimensional (basic) hereditary algebras of finite or cyclic type and related applications to Ringel–Hall algebras, (and hence, to quantum groups). We shall briefly review the geometric setting of quantum gln by Beilinson, Lusztig and MacPherson and its connections to Ringel– Hall algebras and q-Schur algebras. In the second part ...
متن کاملSchur-Weyl reciprocity between the quantum superalgebra and the Iwahori-Hecke algebra
In the representation theory, the classification and the construction of the irreducible representations are essential themes. In the first half of the twentieth century, I. Schur[11] introduced a prominent method to obtain the finite dimensional irreducible representations of the general linear group GL(n,C), or equivalently of its Lie algebra gl(n,C), which we call Schur-Weyl reciprocity at p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008